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We demonstrate that charge-qubit cluster state generation by capacitive coupling is anisotropic. Specifically,
horizontal vs vertical nearest-neighbor interqubit coupling differs in a rectangular lattice. We show how to
ameliorate this anisotropy by applying potential biases to the array of double dots.
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I. INTRODUCTION

One-way quantum computing is a particularly attractive
model for quantum circuits because global entanglement is
accomplished in a single step, and then all subsequent quan-
tum computation is effected simply by sequential feedback-
controlled single-qubit measurements.1 The globally en-
tangled state that serves as a universal substrate for quantum
computation is known as a cluster state and was originally
proposed for optical lattices2 and subsequently demonstrated
with photons.3 Efficient quantum circuits for one-way quan-
tum computing was proposed for solid-state devices.4

Solid-state charge-qubit cluster states �CQCSs� offer the
exciting prospect of one-way quantum computing with
semiconductors.5,6 Here we show that proposals for periodic
generation of charge-qubit cluster states involving double-
dot �henceforth “ddot” as this term emphasizes the single-
entity nature of the ddot structure� charge qubits are compli-
cated by an overlooked interqubit coupling asymmetry in
two dimensions �2D�. We remedy this complication by show-
ing that the original proposals5,6 can be recovered simply by
applying a potential field bias.

We proceed first by establishing the second-quantized
Hamiltonian description for the array of quantum dots and
then showing how the Hamiltonian can be simplified to a
first-quantized Hamiltonian over ddot charge qubits. In the
slow tunneling-rate regime, we show that the first-quantized
Hamiltonian is well approximated by the ubiquitous Ising-
like type Hamiltonian. This Hamiltonian considerably sim-
plifies the dynamical description and shows that the neces-
sary bias of the ddot charge qubits to generate cluster states
is determined by the number of ddot neighbors. Thus a glo-
bal bias of a large structure will lead to periodic evolution of
excellent approximations to cluster states. Furthermore, by
applying different biases only to the ddots on the boundary
�and not to the ddots within�, the Hamiltonian induces evo-
lution to the ideal cluster state.

Our aim here is to remedy the deficiency of anisotropies
in the evolution of ddot charge qubits. We show that this
problem can be nearly remedied by a global field bias and
completely remedied by a global field bias with corrective
biases applied to the ddots at the boundary. This method for
correcting anisotropy is examined numerically for the case of
40 nm GaAs ddots in a two-dimensional lattice formation
with a being the distance between two sites of the ddot, dx

and dy the distance between both left and right sites of two
nearest-neighbor ddots in x direction and y direction in Fig.
1�a�, respectively.

II. CHARGE-QUBIT CLUSTER STATE

The CQCS in two dimensions is depicted in Fig. 1. The
standard depiction of this cluster state is shown in Fig. 1�a�
as a periodic rectangular lattice of qubits connected to near-
est neighbors by solid lines. Each qubit state is in H2
=span��0� , �1��, with �0� the logical zero state and �1� the
logical one state. Cluster state generation proceeds first by
globally transforming every qubit from the state �0� to the
state �+� where �� �ª ��0�� �1�� /�2. We refer to ��0� , �1�� as
the “standard basis” and ��+� , �−�� as the “dual basis.”

After all N qubits in the cluster state are prepared in the
�+��N state, nearest-neighbor qubits then interact via the two-
qubit controlled-Z operations, denoted CZ. Here Z is the
Pauli “phase” operator. The other Pauli operators are the
“flip” operator X, the “flip+phase” operator Y =XZ, and the
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FIG. 1. �Color online� �a� A two-dimensional cluster state. Each
gray ball represents a charge qubit, and lines connect nearest neigh-
bors in the horizontal and vertical directions. These lines corre-
spond to coupling by controlled-Z operations. �b� The qubit repre-
sented by a gray ball is expanded to a double-dot structure. The
logical qubit state �0� is depicted as the double-dot structure with
and extra charge in the left �L� dot. �c� The double-dot structure is
modeled as a double-well potential. The blue �lower� pair of lines
corresponds to the energy of the symmetric state for the sharing of
the excess charge between the two wells, and the red �upper� pair of
lines corresponds to the energy of the antisymmetric shared-charge
state.
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identity operator 1. This operation is represented in the two-
qubit standard basis ��00� , �01� , �10� , �11�� as CZ
=diag�1,1 ,1 ,−1�. The unitary operation CZ is independent
of whether the line in Fig. 1�a� is horizontal or vertical.

Figure 1�b� shows that the horizontal vs vertical symme-
try is in fact broken by the coupling axis of the charge qubit,
which is represented in Fig. 1�b� as an excess charge in the
left or right quantum dot. Although the charge-qubit coupling
axis could be aligned independently of the orientation of the
overall qubit lattice, we will treat the case that the charge-
qubit coupling axis is in the x direction. This is a physically
reasonable case, and extending to the case of arbitrary align-
ment is involved but not difficult.

The charge qubit can be created as a semiconductor ddot
structure.7 Other alternatives exist such as the superconduct-
ing charge qubit8 or a pair of dangling bonds on a surface.9

In any case, the logical states typically correspond either to
the left- and right-well occupancy by the excess charge or,
alternatively, to the cases of symmetric or antisymmetric
charge states between the two dots of a ddot charge qubit.

For coherently evolving charge qubits, Schrödinger’s
equation can be used to describe the dynamics, and the po-
tential in Schrödinger’s equation is depicted in Fig. 1�c�.
Here we treat the standard basis as corresponding to left and
right occupancy; the dual basis then corresponds to the sym-
metric and antisymmetric charge-occupancy states.

The quantum dots are engineered so that each potential
well has only one bound energy state for the excess electron.
Due to the Pauli exclusion principle, the number of electrons
in each well is either zero or one or else two electrons with
opposite spins. The case of two excess electrons in one
double-dot structure should be energetically forbidden by
Coulomb repulsion between the two electrons to preserve the
integrity of the charge qubit.

III. MODELING THE DYNAMICS

The goal is to have one excess electron per closely spaced
quantum dot pair but the general picture is that each quantum
dot can have one or two electrons. The restriction of one
excess electron must emerge as an energetically favorable
configuration rather than be imposed by fiat. The full second-
quantized description of the electrons in the array of quan-
tum dots is given by the extended Hubbard model �EHM�.

A. Extended Hubbard model

The EHM applies to an array of quantum dots whose
locations in a two-dimensional array are denoted by lattice
coordinates. For ĉij the annihilation operator at dot site �i , j�,
ĉij

† the conjugate creation operator, and n̂ij = ĉij
† ĉij the number

operator, the dynamics of the charge-qubit cluster state can
conveniently be described by the extended Hubbard
Hamiltonian10 �as spin is conserved, we can, without loss of
generality, assume fixed spin and ignore this degree of free-
dom�,

Ĥ = �
i,j

En̂ij + V̂ + �
i,j,i�,j�

Wij,i�j�n̂ijn̂i�j� − Tij,i�j��ĉij
† ĉi�j� + H.c.� .

�1�

Here E is the effective on-site energy for each site �i , j�,
which can vary due to local field effects. Tij,i�j� is the coher-

ent tunneling rate between sites �i , j� and �i� , j��. Wij,i�j� is
the Coulomb repulsion energy between sites �i , j� and �i� , j��.
Finally, for �n̂

ij,i�j�ª n̂ij − n̂i�j� the number-difference opera-
tor between sites �i , j� and �i� , j��, the potential bias operator
is

V̂ =
1

2 �
i,j,i�,j�

Vij,i�j��n̂

ij,i�j� �2�

with Vij,i�j� the intersite �i , j�↔ �i� , j�� potential difference.
In fact Eq. �1� describes not just nearest-neighbor interac-

tions but interactions between all dots with all other dots,
where the interdot couplings Tij,i�j� and Wij,i�j� are suitably
chosen. For charge qubits corresponding to closely spaced
dot pairs, Tij,i�j� can be neglected for all but the ddot of a
given charge qubit. Also Wij,i�j� is only significant between
charge qubits. The interdot �possibly screened� Coulomb re-
pulsion is neglected for the ddots of a charge qubit because
Wij,ij is sufficiently large to prevent both dots from being
simultaneously excessively charged.

B. Single-qubit gates

Equation �1� is a second-quantized Hamiltonian. To
bridge this Hamiltonian over to the multiqubit description,
we restrict the Hilbert space, upon which the first-quantized
version of the Hamiltonian acts, to the case of a single excess
electron in each double well. Note here that a dot has lattice
coordinates expressed here as �i1 , j1� and dot 2 is at �i2 , j2�.

For an array with close proximity between dots of the
ddot pair, the resultant charge-qubit ddot pair can be treated
as a pointlike object in the quantum computing architecture.
This ddot charge qubit has a pointlike coordinate designated
by �m ,n� where the change in font is used to indicate point-
like ddot coordinates rather than the coordinates of a particu-
lar quantum dot. Thus, we use �i , j� to designate the location
of a quantum dot in a two-dimensional array and �m ,n� to
denote the location of a pointlike ddot charge qubit.

Assuming two dots of each ddot pair share one electron,
the state od ddot pair is a superposition of two basis states:
��L� , �R��. Here L�R� indicates that the electron is in the left

�right� dot. In this basis, Ĥ in Eq. �1� for one ddot projected

onto Ĥmn is

Ĥmn = E��L�	L� + �R�	R�� + V
�L�	L� − �R�	R�

+ T��L�	R� + H.c.�� = �E + V T

T E − V
 �3�

for V=VL−VR �the relative energy between the left and right
dots of a ddot pair�, and T is the flip rate corresponding to the
tunneling rate between the two dots of a ddot charge qubit.

This Hamiltonian can be conveniently rewritten as a lin-
ear combination of three types of quantum gates. These gates
are the identity 1, X= �0�	1�+ �1�	0�, phase gate Z= �0�	0�
− �1�	1� with �0�ª �L� and �1�ª �R�. With these simplifica-
tions, the Hamiltonian �1� can be projected into the qubit
space. This projection becomes clear by studying the single-
qubit case comprising one ddot pair.
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In the standard basis, the ddot single-qubit Hamiltonian is

Ĥmn=E1+TX+VZ at site �m ,n�. Here E is an energy term
for the qubit. The bias V can be controlled by applying an
electric field potential across the ddot pair.

In order to connect our mathematical expressions to a
typical experimental setting, we consider a GaAs ddot with a
single-dot diameter of 40 nm.11 A typical experimental pa-
rameter range for tunneling is T�0–10 �eV: here we
choose T=0.1 �eV�160 MHz�. By tuning the electric field

to V=0, the evolution of the Hamiltonian Ĥmn effectively
implements bit flips via the X operator, and the resultant
tunneling or flipping rate is 160 MHz. By tuning the electric
potential bias to V�T, e.g., V=10 �eV, the dynamics is
dominated by phase flipping at a rate of 16 GHz.

C. Two-qubit gates

Now let us consider the two-qubit gate such as the CZ
gate, which can be implemented via Coulomb interaction
between two nearest-neighbor charge qubits shown below.
The Hamiltonian for two nearest-neighbor charge qubits lo-
cated at �m ,n� and at �m� ,n�� with �possibly screened� Cou-
lomb interaction is

Ĥmnm�n� = 2E1 + TXmn + VmnZmn + TXm�n� + Vm�n�Zm�n�

+ �
l,k=0

1

�lk�lk�mnm�n�	lk� . �4�

The last term describes the Coulomb interaction energy in
the qubit basis between the two nearest-neighbor charge qu-
bits located at �m ,n� and at �m� ,n�� to with sums over l and
k representing the two charge qubits are in the state �l� and
�k�.

The coefficients �lk are the intersite Coulomb interaction
strengths between the same or opposite sites of the two
charge qubits �m ,n� and �m� ,n��. For the case l=k, i.e., the
two charge qubits are in the same states and both electrons in

the left or right dots, we have �00=WLL
mnm�n� and �11

=WRR
mnm�n�. For the other case l�k, i.e., the two charge qubits

are in different states and the two electrons in different dots,

we have �01=WLR
mnm�n� and �10=WRL

mnm�n�.
In the 2D lattice shown in Fig. 1�a�, for two nearest-

neighbor charge qubits there are two cases: both qubits lo-
cated in the same column �along the x direction� and in the
same row �along the y direction�. We use the superscripts x
and y to distinguish these two cases. For the two nearest-
neighbor charge qubits in the same column in which the
structure is symmetric, �00

x =�11
x =VQ /dx, and �01

x =�10
x

=VQ /�dx
2+a2 for VQ=e2 / �4��� with � the applicable dielec-

tric constant. In contrast, for the two nearest-neighbor charge
qubits in the same row in which the structure is asymmetric,
�00

y =�11
y =VQ /dy, �01

y =VQ / �dy +a�, and �10
y =VQ / �dy −a�.

For the GaAs ddot system considered in the previous sec-
tion, we have VQ=1.75�10−29 N m2. With the experimental
parameters a=400 nm, dx=5.5 �m, and dy =5.85 �m,11 we
numerically estimate the coefficients of the interaction terms

to obtain �00
x =�11

x =20.0 �eV, �01
x =�10

x =19.8 �eV, �00
y =�11

y

=18.7 �eV, �01
y =17.5 �eV, and �10

y =20.1 �eV.

IV. GENERATING CLUSTER STATES

In the one-way quantum computing model, the two-
dimensional cluster state is a highly entangled multiqubit
state and processed by performing sequences of adaptive
single-qubit measurements, thereby realizing arbitrary quan-
tum computations. The two-dimensional cluster state serves
as a universal resource for one-way quantum computing, in
the sense that any multiqubit state can be prepared by per-
forming sequences of local operations on a sufficiently large
two-dimensional cluster state.12

In previous proposals,5,6 charge qubits are treated as being
symmetrically coupled, which is an appropriate strategy for
the one-dimensional case but not at all for the two-
dimensional case. Here we show that, by applying local ex-
ternal electric fields, we can generate two-dimensional clus-
ter states without the requirement of symmetry of charge
qubits.

In the two-dimensional case shown in Fig. 1�a�, we obtain
a more general Hamiltonian case with external electric fields
Vmn applied on each qubit �m ,n� located in the mth row and
the nth column of the ddot charge qubit array,

Ĥ2D = N2E + �
m,n=1

N �TXmn + VmnZmn +
1

2
�+

x1mn � 1m+1,n

+
1

2
�−

xZmn � Zm+1,n +
1

2
���+

x + ��−
x�Zmn

+
1

2
���+

x − ��−
x�Zm+1,n,+

1

2
�+

y1mn � 1m,n+1

+
1

2
�−

yZmn � Zm,n+1 +
1

2
���+

y + ��−
y�Zmn

+
1

2
���+

y − ��−
y�Zm,n+1� , �5�

where in order to rewrite the interaction terms in the Pauli
operator Z, we introduce 2��

x�y�=�00
x�y�+�11

x�y���01
x�y�+�10

x�y�,
��+

x�y�=�00
x�y�−�11

x�y�, and ��−
x�y�=�01

x�y�−�10
x�y�.

For the two nearest-neighbor charge qubits in the same
column in which the structure is symmetric, we have �+

x

=VQ /dx+VQ /�dx
2+a2, �−

x =VQ /dx, and ���
x =0. In contrast,

for the two nearest-neighbor charge qubits in the same row in
which the structure is asymmetric, we have

��
y =

VQ

dy
�

VQ

2�dy + a�
+

VQ

2�dy − a�
, �6�

��+
y =0, and ��−

y ���=−2VQa / �dy
2−a2�. By choosing the

proper distances dx and dy between the nearest-neighbor
charge qubits, we have �−

x /2=�−
y /2��.

For the GaAs ddot system considered in the previous sec-
tion, the energy offsets are �+

x =39.7 �eV, �+
y =37.5 �eV,

��=−2.6 �eV, and �=10.0 �eV. Note that �� is compa-
rable to the bias Vmn hence cannot be neglected.
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The Hamiltonian for the two-dimensional array of charge
qubits can be simplified as �neglecting identical terms such
as N2E and other such terms�

Ĥ2D� = �
m,n=1

N


TXmn + Vmn� Zmn + ��Zmn � Zm+1,n + Zmn

� Zm,n+1�� , �7�

where

Vmn� = �Vmn, m = 1, . . . ,N;n = 2, . . . ,N − 1

Vm1 − ��/2, m = 1, . . . ,N;n = 1

VmN + ��/2, m = 1, . . . ,N;n = N
� �8�

are the modified energy offsets for each ddot pair at site
�m ,n�.

For the ddot pairs on the two edge columns, the energy
offsets are modified due to the asymmetry of the structure. In
contrast, for those in the middle columns, the energy offsets
remain and are caused by the applied electric fields because
the extra energy offsets are canceled out due to the structure.

V. APPROXIMATING ISING-LIKE TYPE DYNAMICS

We apply a canonical transformation for a global basis
change on the Hamiltonian shown in Eq. �7�,

Ĥeff = exp�i �
m,n=1

N
T

2Vmn�
Ymn�Ĥ2D� exp�− i �

m,n=1

N
T

2Vmn�
Ymn�

= ĤIs + Ĥund, �9�

where

ĤIs = �
m,n=1

N


EmnZmn + ��Zmn � Zm+1,n + Zmn � Zm,n+1��

�10�

for Emn=Vmn� +T2 /Vmn� an Ising-like type Hamiltonian �we
need not only the interaction term such as Zmn � Zm+1,n
+Zmn � Zm,n+1 but also the term Zmn for the generation of the
cluster state� and

Ĥund = � �
mn=1

N �−
T

Vmn�
Zm+1,n � Xmn −

T

Vm+1,n�
Zmn � Xm+1,n

+
T2

Vmn� Vm+1,n�
Xmn � Xm+1,n +

T

Vmn�
Zm,n+1 � Xmn

+
T

Vm,n+1�
Zmn � Xm,n+1 −

T2

Vmn� Vm,n+1�
Xmn � Xm,n+1� .

�11�

The Hamiltonian Ĥund is an undesirable interaction for the
generation of cluster states. In the slow-tunneling regime,

T 	 ��� 
 �Vmn� �12�

combined with T	 �Vmn� � derived from Eqs. �8� and �12�, we

obtain the approximate Ising-like type Hamiltonian ĤIs. If

T	 �Vm,n� � is satisfied, the coefficients of Ĥund are small

enough so that the unwanted interaction term Ĥund can be
neglected and Emn�Vmn� . Thus, the control term V is now
embedded within the term E, which incorporates the modi-
fied control bias V� and the tunneling rate T.

A. Periodically generating a cluster state

We can periodically generate a large particle cluster state,

��̃� = exp�i �
m,n=1

N

Ymn���� �13�

in this tilted �i.e., biased� frame by applying the unitary op-

eration exp�−iĤIst� on the initial state ���ini after a time t, if
and only if both �t= �

4 +2k� and Emnt=− �
4 ��mn

x +�mn
y �

+2k�� are satisfied for k and k� arbitrary integers. Here �mn
x�y�

is the number of qubits connected to the qubit �m ,n� in the
x�y� axis shown in Fig. 1�a�.

The two constraints lead to the relation

Emn = �
− ��mn

x + �mn
y � + 8k�

1 + 8k
. �14�

Consider a two-dimensional structure shown in Fig. 2�a�: we
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FIG. 2. �Color online� �a� The electric fields with different
strengths are applied on the ddot pairs in a periodic structure iso-
lated by the dashed and solid lines with different colors and shapes:
�8k�−2�� / �8k+1�+�� /2 �yellow square�; �8k�−2�� / �8k+1�
−�� /2 �yellow circle�; �8k�−4�� / �8k+1� �black dashed box�;
�8k�−3�� / �8k+1� �red dashed circle�; �8k�−3�� / �8k+1�+�� /2
�blue dashed circle�; �8k�−3�� / �8k+1�−�� /2 �green dashed
circle�. �b� By choosing k=k�=0 for simplicity, we show an ex-
ample of how to apply electric fields on the ddot pairs for generat-
ing a two-dimensional cluster state. �c� The periodic structure of a
two-dimensional array of ddot pairs for an alternative method to
generate a two-dimensional cluster state by simply applying a glo-
bal electric field −3� on the first and last rows, and −4� for the
remaining rows, respectively.
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have

E11 = E1N = EN1 = ENN = �8k� − 2��/�8k + 1� �15�

and

Emn =�
8k� − 4

8k + 1
� , m,n = 2, . . . ,N − 1,

8k� − 3

8k + 1
� , m = 1,N;n = 2, . . . ,N − 1,

8k� − 3

8k + 1
� , m = 2, . . . ,N − 1;n = 1,N .

� �16�

Equation �15� represents the effective energy offsets of the
ddot pairs at the four corners, which have two connections
along the x and y axes, respectively; i.e., �x+�y =2. The simi-
lar principle applies to the first expression of Eq. �16�, which
shows the effective energy offsets of the charge qubits that
interact with a total of four nearest-neighbor qubits: i.e., �x
+�y =4. The second and third expressions of Eq. �16� show
that the effective potential differences of the ddot pairs on
the boundaries with three connections; i.e., �x+�y =3.

From the above reasoning we see that a cluster state can
be generated for a potential energy offset Vmn of the �m ,n�th
ddot qubit as

Vmn � �Emn, m = 1, . . . ,N;n = 2, . . . ,N − 1,

Em1 + ��/2, m = 1, . . . ,N;n = 1,

EmN − ��/2, m = 1, . . . ,N;n = N .
�
�17�

Hence generating two-dimensional cluster states can be
achieved by applying local electric fields to set the energy
offsets as above. In our structure shown in Figs. 2�a� and
2�b�, there are six choices of electric field biases in total with
different strengths applied to each ddot pair described in
Table I.

B. Cylindrical cluster state

By changing the structure of the array of charge qubits to
that shown in Fig. 2�c�, we can generate a large two-
dimensional cluster state by simply applying global electric

fields instead of local electric fields, resulting in an important
simplification to the technical challenges of generating clus-
ter states.

From our analysis above we observe that the choice of
external electric field strength depends on two factors: the
number of connections to nearest neighbors �x+�y and the
extra energy offset due to asymmetry of the two-dimensional
structure. The periodic boundary condition n+N=n dis-
misses the second factor, and the extra energy offsets of the
ddot pairs located on two edge columns cancel each other.

The periodic boundary condition also partially diminishes
the first factor and makes the connections of all ddot pairs
except for those located on the first and last rows to be �x
+�y =4. For those ddots located on the first and last rows,
�x+�y =3, and the global electric fields on the two rows are
set to be �8k�−3�� / �8k+1� while all the others are set to be
�8k�−4�� / �8k+1�. For simplicity, choosing k=k�=0, to gen-
erate a two-dimensional cluster state, one only needs to ap-
ply an external global electric field −3� on the first and last
rows, and −4� for the remaining rows, respectively.

C. Validity of Ising-like type evolution to a cluster state

Our approach is valid if the contribution of the term Ĥund
in Eq. �11� to the evolution is negligible. The fidelity of the
pure two-dimensional cluster state is

F = �ini	��eiĤeffte−iĤIst���ini�2

�1 − �4N�tT

V̄
2

, �18�

for N qubits, which gives an upper bound of the maximum
number of cluster qubits with a fixed fidelity

Nmax�N2� = �1 − F�� V̄

4�tT
2

�19�

for V̄ the absolute value of the average energy offset of ddot
pairs. In other words, approximating the anisotropic evolu-
tion by isotropic Ising-like type evolution is valid provided
that the total number of qubits does not exceed Nmax, which
depends on the acceptable less-than-unity fidelity F.

With the evolution time t=� /4�, the fidelity and the
maximum number of cluster qubits can be written as F=1

− ��NT / V̄�2 and Nmax�N2�= �1−F��V̄ /�T�2. For T

=0.1 �eV, �=10 �eV, and V̄�4�=40 �eV �for large N�,
our calculations show that a 2D 162-qubit cluster state with a
high fidelity F=0.99 can be produced. For T=1 �eV and
�=10 �eV, Nmax=16 with a fidelity F=0.9 for the 2D clus-
ter state.

VI. CONCLUSIONS

We have considered deterministic unitary evolution of a
cluster state in a charge-qubit structure with charge qubits
made of ddot structures. Although periodic evolution into
charge-qubit cluster states has been considered before, aniso-
tropy presents a critical yet overlooked challenge. At first

TABLE I. For a ddot system in GaAs, with the choice of k
=k�=0 for simplicity and experimental parameters VQ=1.75
�10−29 N m2, a=400 nm, dx=5.5 �m, and dy =5.85 �m, we can
estimate the potential-energy offset for each ddot as follows:

m n

Vmn

��eV�

1,N 1 �� /2−2�=−21.3

1 ,N N −�� /2−2�=−18.7

1 ,N 2, . . . ,N−1 −3�=−30.0

2 , . . . ,N−1 1 �� /2−3�=−31.3

2 , . . . ,N−1 1 −�� /2−3�=−28.7

2 , . . . ,N−1 2, . . . ,N−1 −4�=−40.0

NEAREST-NEIGHBOR COUPLING ASYMMETRY IN THE… PHYSICAL REVIEW B 82, 085326 �2010�

085326-5



anisotropy seems to destroy the opportunity to create cluster
states in this way.

We have shown how to circumvent this problem by ap-
plying electric field biases to the ddot structures. In the slow-
tunneling regime, the effective single-quantized multiqubit
Hamiltonian can be approximated by the Ising-like type
Hamiltonian. In this case, electric field biases can overcome
the challenge of anisotropy. If the electric fields had to be
tailored to each ddot charge qubit or if the field had to be
controlled over time, the strategy would be impractical.
However, we have shown that a global field over all but the
boundary qubits, and five choices of electric field biases on
boundary qubits no matter how large the system is, entirely
eliminates the problem of anisotropy.

Remarkably, by changing the structure of the array of
charge qubits, we can generate a large two-dimensional cy-
lindrical cluster state by simply applying an electric field on
the first and last rows, and a different one for the remaining
rows, respectively. Compared to previous schemes, no as-
sumption of isotropy for charge-qubit couplings is made in
our procedure and in fact is shown not to be valid for two-
dimensional cluster states. We augment our theoretical analy-
sis of anisotropy by including numerical analysis for the case

of GaAs double dots in a two-dimensional lattice. In particu-
lar, we show that the energy offsets due to anisotropy are
noneligible in this case.

For these charge qubits to be useful, noise and decoher-
ence need to be considered. Also the charge qubits consid-
ered here periodically evolve into cluster states and then
back to their initial states due to the periodic nature of the
unitary evolution. Timing becomes critical in such dynamics
or else the interactions that produce the cluster states must be
able to be switched off. Measurement-based quantum com-
puting also becomes challenging for such periodically occur-
ring cluster states. These considerations are the seeds for
future study.

ACKNOWLEDGMENTS

This work has been supported by National Natural Sci-
ence Foundation of China, Grant No. 10944005, the South-
east University Start-Up Fund, Canada’s Natural Science and
Engineering Research Council, Candian Institute for Ad-
vanced Research, the Canadian Innovation Platform “Quan-
tumWorks,” and Alberta’s Informatics Circle of Research
Excellence.

1 R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188
�2001�; Quantum Inf. Comput. 2, 344 �2002�; R. Raussendorf,
D. E. Browne, and H. J. Briegel, Phys. Rev. A 68, 022312
�2003�.

2 H. J. Briegel and R. Raussendorf, Phys. Rev. Lett. 86, 910
�2001�.

3 P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter,
V. Vedral, M. Aspelmeyer, and A. Zeilinger, Nature �London�
434, 169 �2005�.

4 T. Tanamoto, Y.-X. Liu, X. Hu, and F. Nori, Phys. Rev. Lett.
102, 100501 �2009�.

5 T. Tanamoto, Y.-x. Liu, S. Fujita, X. Hu, and F. Nori, Phys. Rev.
Lett. 97, 230501 �2006�.

6 J. Q. You, X.-B. Wang, T. Tanamoto, and F. Nori, Phys. Rev. A

75, 052319 �2007�.
7 T. H. Oosterkamp, T. Fujisawa, W. G. van der Wiel, K. Ishibashi,

R. V. Hijman, S. Tarucha, and L. P. Kouwenhoven, Nature �Lon-
don� 395, 873 �1998�.

8 P. G. J. van Dongen, Phys. Rev. B 49, 7904 �1994�.
9 L. Livadaru, P. Xue, Z. Shaterzadeh-Yazdi, G. DiLabio, J. Mu-

tus, J. Pitters, B. Sanders, and R. Wolkow, New J. Phys. 12,
083018 �2010�.

10 S. Robaszkiewicz, Phys. Status Solidi B 59, K63 �1973�.
11 J. R. Petta, H. Lu, and A. C. Gossard, Science 327, 669 �2010�.
12 M. Van den Nest, A. Miyake, W. Dür, and H. J. Briegel, Phys.

Rev. Lett. 97, 150504 �2006�; M. Van den Nest, W. Dür, G.
Vidal, and H. J. Briegel, Phys. Rev. A 75, 012337 �2007�.

PENG XUE AND BARRY C. SANDERS PHYSICAL REVIEW B 82, 085326 �2010�

085326-6

http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1103/PhysRevA.68.022312
http://dx.doi.org/10.1103/PhysRevA.68.022312
http://dx.doi.org/10.1103/PhysRevLett.86.910
http://dx.doi.org/10.1103/PhysRevLett.86.910
http://dx.doi.org/10.1038/nature03347
http://dx.doi.org/10.1038/nature03347
http://dx.doi.org/10.1103/PhysRevLett.102.100501
http://dx.doi.org/10.1103/PhysRevLett.102.100501
http://dx.doi.org/10.1103/PhysRevLett.97.230501
http://dx.doi.org/10.1103/PhysRevLett.97.230501
http://dx.doi.org/10.1103/PhysRevA.75.052319
http://dx.doi.org/10.1103/PhysRevA.75.052319
http://dx.doi.org/10.1038/27617
http://dx.doi.org/10.1038/27617
http://dx.doi.org/10.1103/PhysRevB.49.7904
http://dx.doi.org/10.1088/1367-2630/12/8/083018
http://dx.doi.org/10.1088/1367-2630/12/8/083018
http://dx.doi.org/10.1002/pssb.2220590155
http://dx.doi.org/10.1126/science.1183628
http://dx.doi.org/10.1103/PhysRevLett.97.150504
http://dx.doi.org/10.1103/PhysRevLett.97.150504
http://dx.doi.org/10.1103/PhysRevA.75.012337

